DYNAMIC METHOD OF MEASURING THE THERMAL
CONDUCTIVITY OF GASES AT HIGH TEMPERATURES

R. A. Mustafaev UDC 536.23:536:453

The author proposes a method of measuring and a formula for calculating the thermal
conductivity of gases during monotonic heating,

Thermophysical measurements are made basically on specimens of simple shapes (plate, cylinder,
sphere) inside which a one-dimensional temperature field t(r, 7) with a sufficiently small drop is artificial-
ly maintained.

The following nonlinear equation of heat conduction is valid for calculating the temperature field in

such specimens;
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Generally, the coefficients a(t), A(t), c(t), and ¥ (t) are arbitrary functions of the temperature,

An analytic solution can be obtained only in individual special cases where the temperature-depen-
dence of the thermophysical properties is subject to simplifying constraints and where either rigorous or
approximate transformations may reduce the equation to a linear one,

The simplest case is

a(f) = const; A(f) =const; c¢(f) =const; v (f) = const. 2

With (2), Eq. (1) transforms into the ordinary linear equation of heat conduction
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which has been solved in [1] for various different boundary conditions,
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Fig.1l, Basic schematic diagram of a A-calorimeter;
C) copper road; B) metal block; H) heater,
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L' )__ Almost all existing methods of thermophysical measurements
’ are based on regularities in the solution to Eqg. (3). With any other
28 - assumptions concerning the functional relations a(t), A(t), c¢(t), and
_/ v (t) than those in (2), Eq. (2) will remain nonlinedr and will require
% approximate methods of solution.
h P 3 7o Thermophysical measurements usually involve a small tempera-

ture drop #(r, 7). This allows us to represent the parameters g, A,
¢, and vy on intervals commensurable with #(r, 7) as Taylor series
expansions of the respective functions in powers of #(r, 7):

a=a,(1+k8+n8+--2); A=A (l+kO+no+...);
C=c°(1+kcﬁ+ncﬁ2+' : '); 'Y':'Yo(l +kvﬁ+ﬂv'ﬁ2+ . ')v

The power series in (4) are absolutely convergent. The rate of their convergence is directly related
to the magnitude of the temperature drop 4 and can be controlled by the experimenter,

Fig.2. Ratio X /I = f(nl)for real
A -calorimeters.

4)

An analysis of published data shows that, within the temperature ranges between phase transforma-
tions, the relative coefficients remain usually |k;| = 3-107% deg™! and |n;| = 3-107% deg™2, making the condi-
tions for the optimum convergence of series (4)

{31 <0.1 and |[n;8%(<0.01 (5)

eagily realizable in thermophysical measurements. For ingtance, conditions (5) allow measurements with
4 =10-100°C, and with 4 = 5°C we have for series ():

[h0]<0.01 and |n0%|< 0.0001. (6)

If conditions (6) are satisfied, then the thermophysical parameters can be represeated as linear func-
tions of the temperature drop .

The basic principle of a A-calorimeter is shown schematically in Fig.1, The temperature distribu-
tion in the active zone of this calorimeter is also indicated here,

The calorimeter consists of a metal block B and a solid copper rod C mounted coaxially, Between
them there is a rather narrow gap filled during the experiment with the test gas. The calorimeter isheated
monotonically by a heater H spread uniformly over the outside surface of the block,

Generally, the heat can be transmitted through the gap by conduction, convection, and radiation, Con-
vection can usually be eliminated from gaseous interlayers without major difficulties. The radiative compo-
nent is appreciable at high temperatures, however, and must be accounted for.

The temperature drops will be referred to the rod temperature:
B (r, ) =1(r, 1) —14 (7). @)

The thermal flux through the gaseous interlayer is determined by the heat capacity Cg (t) and the heating
rate bp (r) of the rod:

Q@ = C. (04, (®). | ®)
The thermal flux penetrates through the gap by conduction Q, and by radiation Qy:
Q@ =& @®+Q (). ©)
The following expression applies to the radiated flux Qp
Qy () = €402nR{ (T — T4). (10)
The Fourier equation applies to the conduction flux Q, :
@t
dr

Q) (%) = A (D) 2nrt

Integrating (11) from r = R to r = Ry and retaining only the linear term in series (4) will yield

l(ﬁ:&-ln&:t_gl]n&’ (12)
amidpe R,  2mldge R,

where T =tc + 1/2dpC.
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Fig.3. Temperature drops during measurements (ngjy) and during calibra-
tion (n%;,).

Fig.4. "Instrument constants" as functions of the temperature: N (J/m .deg),
Ay (W/m - deg), t (°C).

At a small temperature difference (&BC/ZT < 0.05) expression (10) becomes

Q: (1) = 4e0,2nR I T*0pc. {13)
Consequently, formula (12) can be rewritten as
= C.h, Rs
Ml = —22—In— — AA (¢ (14)
( ) QﬂlﬁBC Rc ( )

where

Ah, (B=4e,0,R,T* In KB
R,
According to the design formula (14), the determination of A(f) requires a measurement of be (T) and
of drop #p across the layer. Another mode of temperature measurements is also possible, where the time
lag 7op (1) of the rod temperature tx (r) is recorded directly. The respective signals Ec (r) and Eg (1) are
recorded through a potentiometer, while the time delay of signal Eg relative to signal Ep is recorded di-
rectly at preselected fixed temperature levels E(t).

For the other mode of temperature measurements the design formula becomes

Al = _ﬂ%s_(t)_m %fi(l + Ac) — ANy (), (15)
where
Ao = — 1/2 (2, + K, — k1) beTcg- (16)
Considering that k;, + kv,r‘k}\ = kg, one can transform (16) into '
Ao = — —;—(kc ko) byt = — -;— (ks + ko) O (17)

The correction Ag in terms of (17) is more convenient for practical use.

These design formulas, which reflect the basic features of the method, do not incorporate a number
of corrections involved in making this method technically feasible and, therefore, are not yet workable.
Such major corrections include: a correction for the readings of thermocouples which measure the tempera-
ture drop across the layer, a correction for the heat transfer from block to rod through stray heat paths,
and a correction for possibly anisothermal active rod and block surfaces. The first of these corrections
must be usually made to account for stray emfs in the thermocouple circuits, for the not quite identical
calibration characteristics of the thermocouples, and for the rather large distance from the active junctions
of the thermocouples to the plane surfaces of the block and the rod. When the thermocouples are installed
permanently, this correction depends only on the temperature level and on the heating rate and can thus be de-
termined from calibration tests and defined as an "instrument constant."” The second correction accounts,
generally, for radiative heat transfer through the layer of test substance, also for heat leakage along the
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. TABLE 1. Test Values of Thermal Conductivity for Air and Water
Vapor at Various Temperatures

2"10% wW/m - deg A-10% w/m. deg

¢ °C - t, °C

air water vapor air water vapor

150 347 280 ’ 319 458 467
207 385 341 336 462 484
227 400 365 354 477 502
246 411 385 363 484 510
265 422 406 380 489 4 532
284 433 426 396 497 550
302 442 445 404 508 558

rod fasteners and the thermocouple wires, The correction for radiation depends essentially on the nature
of the test substance and it must be determined from data on the integral transmittivity of the layer as a
function of the temperature, If the substance is almost perfectly nonabsorbing, then the correction AA .
becomes an "instrument constant” and can be found from calibration tests. The correction for heat leakage
along the rod fasteners and the thermocouple wires AA can, in the case of a permanent installation, be al-
ways treated as an "instrument constant" and determined analytically.

The design formulas (14) and (15) with these iwo corrections become

— cC b Rp
Ml = 2. 20 In =B A}, (18)
A= 9u (B R, ’

Al) = —— »———1n %}2(1 + Ac) — A, (19)

Here AA g = AAyp + Ahr.

Corrections ¢%(r) and 7%(t) are "instrument constants" and can be found from a calibration test dupli-
cating a measurement with the rod inserted into the block along a sliding fit.

A quantitative consideration of the systematic error due to anisothermal active block and rod sur-
faces is fraught with technical difficulties, For instance, it requires a larger number of thermocouples in
the block and in the rod, to be located within the most characteristic zones of the test layer, and it requires
a precise calibration of the calorimeter, In our calorimeter setup there are two main factors which make
the active surfaces of the test layer anisothermal. These are the heating of the rod from its ends and the
inevitable heat loss through the block ends. For a guantitative evaluation of the temperature field we will
use the solution to the problem concerning the heating of a short rod [3].

The temperature field in the block within the zone of the test layer is a parabolic function of the co-
ordinate;

2
A= 4. P (20)

tx ) =150, O — Aty %L

X
72" ’
The temperature field in the rod satisfies the equation of heat conduction;
A
& wy gy be a2 @1)
g T ARD

(¥

with the boundary conditions

dt, dt Moo,
Zel =0, —&| =-—" , =t_()—1t, (). 22
ol I AP S e (22)
The general solution to Eq, (21) is

1 b, Ao chnx
= —_— _— l2 Af —_— 'ﬁ - . 23
el m =t 1) — 55 (2’33 T )Jr (2 87 %, 5 ) aishnd &)

From (23) follows the temperature drop #; (X, T) across the cylindrical part of the layer

1 b, Al chnx ’
- Ny L . Y — 8 . (24)
By, (v, 7) e (QAtB —+ . ) ( B + A, O *) nishal
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Considering that (21 + Rg)¥g = 2097, + Rgd, we have

o R, chnl 1 _( ¢hny 1 )] (25)
A ﬁ“(mT?»—U'“s‘ﬁ“)[m&(nmz W) nlshal

Relation (25) yields the section x where the temperature drop is equal to the mean-over-the-surface
temperature drop, i.e., where the condition JL(E, T) = 45(7) is satisfied. Coordinate x can be determined
here from the following equation:

— R 21 shnl 26
chnx = ¢ chal 4 —=—. . (26)
] T 2A+R,
The curve x/I = f(nl) shown in Fig.2 covers almost all calorimeters used in Eractice. It can be seen
here that within the range nl < 4, which is of most practical significance, the ratio x/I = const so that the
formula

(27)

- a 2R,
x=t}/ s ( 21+R:>

applies.

Thus, if thermocouples B and C are located at section x according to (27), the temperature drop across
the test layer will be equal to the mean-over-the-surface drop and no correction for anisothermy should (to
the first approximation) be necessary. If this condition holds true, then 8 5 and the measured temperature
drop ¢ (x) are related as follows;

& = 8,00 (1 — Ac,), (28)
with AaT denoting a correction for the axial temperature drop along the rod
2 2 .
pop— L. 2 B M {H 4R, *f’_.wﬁ_.;] 29)
270 A, SR, AP 204+ R, 4 (A+R)

Correction Ag,, involves rather determinate parameters and its exact magnitude can be found analyti-
cally. For an estimate of the allowable Aty across the block segment [0, 1} it is convenient to use the in-
equality

A< 2708,A : , (30)
BY o »p [1 . 4R, 5 R ]
b, OR, 2-+R, 4 (A+R)

where A is the relative error within which the temperature drop Atg may be disregarded.

If 35 is measured not with one but with two pairs of thermocouples installed at sections X and —x
equidistant from the center, then correction Agp may most often be omitied.

In many cases a precise isothermism at the boundaries of the test layer is attained rather easily and,
therefore, it is possible to remove any constraints on the coordinate of the thermocouples B and C location.
With certam conditions for measuring S5 defined, for example, one may use thermocouples located at the
center section (x = 0). In order to determine these test conditions, we will make use of relation 25). It fol-
lows from here that 41,0, 7) = K] 5 (), if the condition

2A¢ R R, [ chn 1\
<_B+_5n2[2){ o ( _ )__ I 1 Vlca an
Vg 2 L2+ R, \nishnl n#? nishnl n#® J

is satisfied, with A denoting the allowable relative error due to anisothermy,

In this way, each correction has a distinct structure and can be determined analytically with sufficient
accuracy. Expressions (29)-(31) may be considered the basis for an optimum calorimeter design.

It would be desirable to simplify the design formulas somewhat from the practical standpoint, Con-
sidering that

- 1
8=Rg—R,, R:RB—75, ﬁc__nBck ks b%%—kt AAIi
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and expanding InRp /R into a power series in terms of 6/2f{, we can rewrite formulas (18) and (19) as

~ N® [ AE\
A= E, (nBC— n% ( AT ) Aby, (32)
Ao = =YD (1 4 Ag)—an, (33)

(Tep— ™)
Here N(t) = GCC/F.

In order to verify this method experimentally, the author has built an instrument according to the de-
sign described thoroughly in [4]., Numerous measurements have revealed the effectiveness of both the in-
strument and the procedure. The npc(t) curve and the n’(t) curve shown in Fig.3 are based on calibration
tests and measurements with air. Temperature measurements were made with Nichrome- constantan ther-
mocouples 0.2 mm in diameter and calibrated at the D. I, Mendeleev VNIIM, The temperature drop and the
heating rate were measured with a model R-306 low-resistance potentiometer of class 0.015 accuracy in
conjunction with a model M17/4 mirror galvanometer. The time was recorded by means of a model 51-SD
two-hand stopwatch with 0.1 sec divisions.,

Parameter N(t) appears to be an "instrument constant® and can be easily calculated as a function of
the temperature, For a copper rod Rc = 5 mm and / = 68 mm the values of N(t) are given in Fig. 4.
Here are also shown the calculated values of AAy= AAy +AAT.

The results of control tests for determining A (t) of air and water vapor are given in Table 1. Our
data agree closely with reliable published data [5, 6].

We note, in conclusion, that numerous tests performed at higher temperatures have shown this method
to be applicable to measuring A(t) of gases up to 1000°C. This study is of interest on its own account and

the results will be reported in a separate article,

NOTATION
a(t) is the thermal diffusivity;
A(t) is the thermal conductivity;
v(t) is the density;
Ac(t) is the thermal conductivity of rod material;
T is the time;

k; =1/i(di/dt)
nj = 1/2i(d%/dt?)
Q)

is a relative temperature coefficient;
is a relative temperature coefficient;
is the thermal flux conducted;

Qp is the thermal flux radiated;

£ is the referred emissivity;

a9 is the Stefan—-Boltzmann constant;

Re. Rp are the radius of rod and of block respectively;

) is the thickness of gas interlayer;

Tep(h is the time lag;

Ag is the correction;

AXg is the correction for radiation and for heat leakage;

89, 70 are the corrections for the thermocouple readings;

Qy is the thermal flux density;

2L is the height of block;

Ap is the thermal conductivity of block material;

21 is the height of rod; .

_‘56 is the mean-over-the-surface temperature drop across the interlayer;

L is the mean-over-the-surface temperature drop across the cylindrical part of the
layer;

At.B is the temperature drop across the block;

F is the mean surface of the layer;

AE, AT are the increment of the thermocouple emf and the time corresponding to it;

x is the coordinate;
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is the temperature coefficient of a thermocouple;
is the galvanometer sensitivity;
is the temperature drop, measured in divisions of the galvanometer scale,
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